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1- Introduction 

Climate appears to be changing and society 

needs to respond. Specifically, there is a need to 

know how tree growth will respond to changing 

climate and how to adapt the forest 

management. Mean Northern Hemisphere 

temperatures have increased over the last 

century and the rate of change has been higher 

in the last few decades (IPCC, 2008; 2013).  

It is well known, that climate signals are 

detectable in tree-ring data from ecologically 

sensitive sites (Briffa et al., 1998; 2002; 2008; 

D’Arrigo et al., 2004; Corona et al., 2010; 

Guiot, Corona 2010; Hughes et al., 1999; 

Misson et al., 2004; Rathgeber et al., 2000; 

Shishov, 2000; Shishov et al., 2002; 2007; 

2016; Sidorova et al., 2013; Touchan et al., 

2012; 2014; Vaganov et al., 1999; 2006) and 

tree growth rates have been shown to vary over 

altitudinal and latitudinal transects. Recent tree-

growth trends across northern Eurasia are 

unprecedented in the context of the last 2000 

years (Briffa et al., 2008). The start and end 

dates of tree growing seasons have changed and 

spatial analysis of Normalized Difference 

Vegetation Index (NDVI) trends have revealed 

several regions with increasing primary 

productivity (Myneni et al., 1997; Zhou et al., 

2001). Moreover, significant spatial correlation 
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ABSTRACT 
The project addresses a fundamental problem of forest reaction forecast to 

the climate change and increasing concentrations of greenhouse gases for 

the terrestrial ecosystems of the Earth. 

The main target is to produce a retrospective assessment and a short-term 

forecast of annual tree-ring productivity (seasonal cell production) of the 

major conifer plant species in terrestrial forest ecosystems around Eurasia 

forced by climate and non-climatic factors. The analysis is based on an 

Interactive Information platform “Global Tree-Ring Growth Evolution 

Neural Network” (www.vs-genn.ru) and datasets available for the 

European and Asian dendroecological test-polygons. To achieve the goal 

of the project, we testified the Vaganov-Shaskin model and its 

parametrization, as a part of the developing IT system, based on direct 

long-term field observations for the tree-ring sites in Europe and Asia. As 

a result of the fellowship four papers were published in high impacted ISI 

journals. Moreover, a special issue of the ISI journal “Annals of Forest 

Science” is prepared.  
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between trends in tree-ring growth and NDVI 

has been shown for recent decades at Eurasian 

high latitudes (Shishov et al., 2002; Burn et al., 

2013).  

Some complications exist in that a number of 

dendroclimatic studies have found an apparent 

change in the sensitivity of tree-ring growth 

response to climate forcing (Anchukaitis et al., 

2006; Briffa et al., 1998; 2008; Evans et al., 

2006; 2013; Jacoby and D’Arrigo, 1995; 

Hughes et al., 2011; Melvin, Briffa, 2008; 

Rathgeber et al., 2000; Sidorova et al., 2007; 

2013; Shishov et al., 2007; 2016; Vaganov et 

al., 1999; 2006;) which may be climate related 

(e.g. an increase in moisture stress on 

temperature sensitive trees) but these identified 

changes have not, as yet, been satisfactorily 

explained. Dendroclimatic tree-growth indices 

are created as the average of series of annual 

measurements taken from individual trees 

which have progressed through the juvenile, 

adult and mature stages of growth and as such, 

represent a limited sample of the parameters 

needed to characterize forest growth at a site.  

Vegetation models are generally used to predict 

forest growth but, because of their inherent 

complexity, the outputs of vegetation models 

are poorly constrained (Smith et al., 2001; Ni et 

al., 2006; Guiot et al., 2009). Tree-growth 

models use series of specified environmental 

conditions (climate) to predict the growth, 

development and mortality of individual trees at 

a site but also track soil development, nutrient 

and carbon exchanges, and competition 

providing a detailed description of forest 

development over time (Smith et al. 2001) and 

at a more detailed level can predict the annual 

cycle of tree ring development (Fritts et al., 

1991; 1995; Vaganov et al., 2006). Forest 

growth is dynamic and measurements made in 

the modern era represent a snapshot of this 

dynamic growth rather than a description of the 

equilibrium state which, in conjunction with 

uncertainty in the estimation of climate in the 

centuries prior to the introduction of 

instrumental measurement, leads to uncertainty 

in the initialisation of vegetation and tree-

growth models (Guiot et al., 2009).  

Tree-ring growth and wood formation are 

strongly affected by climatic variations in 

boreal zones of the Northern Hemisphere. Often 

the formation of tree rings is defined as a linear 

function of local or regional precipitation and 

temperature with a set of coefficients that are 

temporally invariant. However, various 

researchers have stressed that tree-ring records 

are the result of multivariate, often nonlinear 

biological and physical processes. For example, 

tree-ring records may reflect nonclimatic 

influences, including age-dependent effects, 

specific local environmental conditions, fire 

disturbances, and insect outbreaks (Cook and 

Kairiukstis, 1990; Cuny et al., 2015; D’Arrigo 

et al., 2004; Shishov, 2000; Shishov et al., 2002; 

Touchan et al., 2014). The temporal 

nonstationarity of biological tree-ring response 

to climate may also be connected with local 

climatic variation itself (Fritts et al., 1991; 

1995; Aykroyd et al., 2001; Briffa et al., 2008; 

Bunn et al., 2013; Cuny et al., 2015; Shishov, 

Il’in, 2009; Shishov, Vaganov, 2010; Vaganov 

et al., 2006; Touchan et al., 2012). The process-

based tree-ring Vaganov-Shashkin model (VS-

model) can be used to describe critical 

processes linking climate variables with tree-

ring formation (Vaganov et al., 2006).  

The VS-model is a nonlinear functional 

operator of daily temperature, precipitation and 

solar irradiance, which transforms a climatic 

signal to tree-ring growth rate, which is 

connected closely with seasonal cambial 

activity and cellular production of tree rings 

(Vaganov et al., 2006; Popkova et al., 2018). 

Several publications have described the use of 

the model in different environmental conditions 

and for various conifer species. For example, 

the potential of the VS-model was used to 

simulate tree-ring growth of conifers in North 

America (Evans et al., 2006; 2013). A total of 

190 tree-ring chronologies were adequately 

simulated in different parts of the United States 

in this first broad-scale application of the VS-

model for simulating tree-ring width data used 

for statistical paleoclimatology. The obtained 

results showed that the analyzed broad-scale 

network of tree-ring chronologies can be used 

primarily as climate proxies for their further use 

in statistical paleoclimatic reconstructions. 
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Furthermore, Anchukaitis and others (2006) 

used the VS-model in a case study for the 

southeastern United States region to understand 

if tree-ring chronologies across the warm, mesic 

climate conditions could be simulated as a 

function of climate alone. They showed that 

there is a significant correlation between 

simulated and observed tree-ring width data 

(Anchukaitis et al., 2006). Moreover, 

application of the process-based model in the 

Mediterranean region demonstrates its ability to 

explain observed patterns of tree-growth 

variation in the past and to simulate tree-ring 

growth in extreme drought conditions (Touchan 

et al., 2012). 

These results illustrate how nonlinear 

multivariate functions can provide realistic 

results, but the various authors noted that the 

same default sets of the model’s parameters for 

different regions were used. Similarly, equally 

artificial results would be obtained if the 

process model’s parameters were adjusted to 

obtain the best fit for each modeled tree-ring 

width chronology (Evans et al., 2006;; Tychkov 

et al., 2019). It means that the “optimal” values 

of model parameters could conflict with field 

observations of tree-ring growth due to unreal 

ecological interpretation of that values and 

natural observed process. Therefore, to 

parameterize the VS-model — estimation of the 

model’s parameters to provide the best fit of 

initial tree-ring chronologies and a reasonable 

description of interaction between climate and 

tree-ring formation – is a real challenge for 

researchers. 

The complexity of the described problems and 

labour-intensiveness of their resolution lead to 

the need of new methodological approaches in 

the analysis of spatial-distributed data sets (i.e. 

tree-ring time series, cell measurements and 

climatic data) as a whole or as a system of 

interrelated data. A Global Tree-Ring Growth 

Evolution Neural Network (VS-GENN) 

available on-line (http://www.vs-genn.ru/) is an 

example of such system where the VS-model 

and its modifications are considered as an 

important component to develop a 

corresponded neural network or meta-model 

able to estimate possible tree-ring growth (or 

even anatomical) response on future climate 

projections for terrestrial forest ecosystems in 

automatic mode. 

Here we present examples of VS-GENN using 

for Eurasian forest ecosystems where tree-ring 

growth are strongly affected by climate 

(temperature, precipitation or mixed climate 

signal during growing season). 

2- Materials and Methods 

2.1 Concept of the VS-GENN 

The research is based on a developing 

Interactive Information platform “Global Tree-

Ring Growth Evolution Neural Network” (VS-

GENN) and available datasets developed for the 

European and Asian dendroecological test-

polygons. 

The Global Tree-Ring Growth Evolution 

Neural Network is an intellectual 

parameterization system of different 

multidimensional process-based models 

(particularly, VS-model as a tested example) 

which combines three novel parallel process 

(Fig. 1): 

- Direct parameterization based on 

optimization evolutional IT- algorithm; 

- Proxy parameterization based on a 

metamodel (artificial neural network which 

operates as direct model but can produce 

simulation results much faster) 

- Re-training of metamodel to reduce a 

discrepancy between simulations obtained 

by the direct and proxy parameterizations. 

https://doi.org/10.34846/Le-Studium.159.01.FR.09-2018
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One of the principal project targets is to test a 

Global Tree-Ring Growth Evolution Neural 

Network (VS-GENN) as an information 

platform to simulate tree-ring growth of conifer 

species in automatic mode for the well-

documented test-polygons in the Europe, 

Siberia and Latin America. 

 

Results should allow to estimate the long-term 

annual tree-ring productivity (cell production) 

of woody plants impacted by the principal 

climatic and non-climatic factors, and to predict 

tree-ring productivity in the short-term context 

for the research regions. VS-simulations based 

on direct long-term field observations for the 

well-documented tree-ring test-polygons in 

Europe, particularly in France, Asia and South 

America will be used as well as state-of-art 

techniques, including unique approaches 

developed by the authors. 

2.2 Brief description of VS-model 

Process-based Vaganov-Shashkin model of 

tree-ring growth simulations (VS-model) plays 

a crucial role in the research because all 

developed algorithmic approaches used in the 

VS-GENN are tested and integrated in the 

platform by the step-by-step VS-model 

application. 

The basic algorithm of the model can be divided 

into four blocks (see Vaganov et al., 2006 for 

details): 

- The Data input block, in which observed 

temperature, precipitation and estimated solar 

irradiance are used as input data; 

 

 

- The Basic block, in which an integral tree-ring 

growth rate Gr(t) is estimated based on the 

following equation: 

Gr(t)=GrE(t)min{GrT(t),GrW(t)}, 

where Gr(t) is an integral tree-ring growth 

rate, GrE(t), GrT(t), GrW(t) are partial growth 

rates depended on daily solar irradiation E, 

temperature T and soil moisture W, 

respectively; 

- The Cambium block, where seasonal number 

of cells and cell sizes are estimated; 

- The Data output block which provides 

seasonal cell profiles.  

The model estimates a daily water balance 

based on accumulated precipitation into the soil 

(taking into account snow melting if needed), 

transpiration (dependent on temperature) and 

drainage. Daily solar irradiation from the upper 

atmosphere is determined by latitude, solar 

declination and day of the year. 

Rate of cambial activity depends on the number 

of cells in the cambial zone and rate of their 

divisions, which linearly depends on the 

integral tree-ring growth rate in the model. 

Moreover, the integral tree-ring growth rate is 

used to estimate actual cell sizes during the 

Figure 1. Principal structure of the developed VS_GENN 

Figure 1. Structure of the VS-GENN 
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enlargement stage and the phase of maturation 

(Vaganov et al., 2006). It was shown that the 

simulated integral growth rate can be 

transformed to tree-ring indices by specific 

procedures used in the Fortran code of the VS-

model (Vaganov et al., 2006; Tychkov et al., 

2012; Touchan et al., 2012; Shishov et al., 

2016). 

2.3 Model parameterization in semi-

automatic mode 

The principal goal of parameterization of the 

model is to obtain a best fit of the simulated 

tree-ring curves to the observed tree-ring 

chronologies by selection of certain parameter 

values of the model. At the same time, the 

selected values should not conflict with the 

biological principles of growth and field 

parameters, obtained for the different ecological 

conditions of analyzed forest stands. The 

solution of this task by direct mathematical 

optimization of multi-dimensional parameter 

space is problematic, taking into account a high 

probability to reach local optimum generating 

artificial decisions (Evans et al., 2006; 

Tolwinski-Ward, 2011; 2013). It is necessary to 

develop a parameterization tool, which allows 

the correct selection of parameter values in an 

interactive mode in complete accordance with 

the expert knowledge. 

Two different techniques of parameterization 

were used in the proposal. 

The VS-oscilloscope is a computer program 

with a graphical interface developed by the 

cross-platform integrated development 

environment - Lazarus – using the Free Pascal 

Compiler (Shishov et al., 2016). By definition, 

an oscilloscope (also known as a scope, CRO, 

DSO or an O-scope) is a type of electronic test 

instrument which allows observation and 

analysis of constantly varying signal voltages as 

a two-dimensional graph of one or more 

electrical potential differences using the Y-axis, 

plotted as a function of time on the X-axis. The 

oscilloscope is used to observe the change of an 

electrical signal over time, so that voltage and 

time describe a shape which is continuously 

graphed against a calibrated scale. Simple 

manipulation of amplitude, frequency, phase 

and other values allows simulation of an 

electrical signal of any complexity. Potentially 

any tree-ring chronology can be considered as 

an analogue of “electrical signal,” in which case 

parameters of the VS-model play the role of 

manipulators that modify the “signal”. By 

interactively changing the parameter values, we 

can observe the variation of climatic signal in a 

tree-ring chronology. Moreover, we can correct 

the selected values of parameters according to 

the direct observations and knowledge. 

Therefore, we named this new parameterization 

approach “VS-oscilloscope” (Shishov et al., 

2016). 

Such approach allows to control values of 

model parameters which should be not 

conflicted with the biological principles of tree-

ring growth and field parameters (Tychkov et 

al., 2019). 

The obtained “expert-controlled” VS-

parameters can be used then as a training sets in 

the Global Tree-Ring Growth Evolution Neural 

Network. 

2.4 Direct parametrization of the model in 

automatic mode. 

In the research we used the R-code version of 

the VS-oscilloscope and specially developed 

robust estimation of 19 parameters of the model 

using the differential evolution (DE) approach 

(Storn, Price, 1997; Price et al., 2005) which 

was integrated in the VS-GENN and 

supercomputer facilities of the Siberian Federal 

University. 

Optimal values of the 19th VS-parameters are 

considered as a set which provide significant 

positive Pearson correlations (p<0.05) on 

calibration and verification periods between 

simulated growth curve and initial tree-ring 

chronology obtained by the differential 

evolution (DE). DE is used to find optimal 

values for multidimensional real-valued 

functions or mathematical system of them. DE 

does not use the gradient of the problem being 

optimized, which means DE does not require 

the optimization problem to be differentiable, as 

is required by classic optimization methods 

such as gradient descent and quasi-Newton 

methods. Due the last definition the DE can be 

applied for wide class of the process-based tree-

ring models. 

3- Results and discussion 

3.1- Key role of the model 

parameterization to explain tree-ring 

growth features 
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Tree-growth response to changing climate 

varies depending on tree species, forest type, 

and geographical region. Process-based models 

can help us better understand these outcomes.  

To characterize growth sensitivity to different 

climate parameters, we applied the VS-

Oscilloscope analytical package, as a precise 

visual parameterization tool of the Vaganov–

Shashkin model, to two contrasting habitats: 

one with tree-ring growth limitation by soil 

moisture (in the southern part of central Siberia) 

and the other with temperature limitation (in the 

middle part of central Siberia).  

We speculate that specific parameter values of 

the Vaganov–Shashkin model and their 

variability under local conditions and species 

are the key to understand different 

physiological processes in conifers.  

 

 

 

According to the simulation results for the 

temperature-limited site, wider rings of Picea 

obovata can result from a longer growing 

season (Fig. 2 C, D).  

However, for the soil moisture-limited site, the 

final sizes of the tree rings of Pinus sylvestris 

were not affected by the length of the growing 

season but were primarily defined by the intra-

seasonal variations in soil moisture, even under 

cold conditions (Fig. 2A, B). For the two sites, 

we obtained a 20-day difference between the 

two phenological dates, in which the early date 

could be associated with cambial initiation and 

the late date with the appearance of the first 

enlarging cell. In the case of central Siberia, the 

period was half that of the southern Siberia. 

Such differences could be explained by both 

geography and species-specific responses to 

phenology.  

Figure 2. The mean kinetics of partial growth rate on soil moisture during seasons when the wide (black 

dashed curve)/narrow (grey solid curve) rings were being formed for MIN site (Pinus sylvestris) (A); the mean 

kinetics of integral growth rate during seasons when the wide (black dashed curve)/narrow (grey solid curve) 

rings were being formed (B) for MIN site; the mean kinetics of partial growth rate on temperature during 

seasons when the wide (black dashed curve)/narrow (grey solid curve) rings were being formed for PlatPO 

site (Picea obovata) (C); the mean kinetics of integral growth rate during seasons when the wide (black dashed 

curve)/narrow (grey solid curve) rings were being formed (D) for PlatPO site. Vertical solid lines are standard 

deviation 
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In this study, we concentrated our attention on 

how the VS-parameter adjustment 

(parameterization) is important in the cases of 

two contrasting habitats. It was confirmed that 

the adjusted values of the model parameters 

depend not only on difference in local 

environmental conditions but also reflect the 

unique cambial phenology and physiology of 

different tree species (Tychkov et al., 2019). 

Moreover, the VS-model parameterization 

calculates year-to-year best-fitted variability of 

tree-ring width via calculations of the seasonal 

kinetics of tree-ring formation, and we have 

justification to consider the simulated kinetics 

of tree-ring seasonal growth to be an adequate 

representation of the actual kinetics of tree-ring 

seasonal growth and climate influence 

(Tychkov et al., 2019). 

3.2- Timing procedure of cell production 

in tree rings 

Main anatomical characteristics of tree ring 

structure, e.g. number of cells and radial cell  

 

 

size, are closely related to the kinetics of cell 

production. Therefore, timing of seasonal 

production is a fundamental aspect of plant 

development and functioning (Popkova et al., 

2018). To better assess the impact of specific 

climatic events to the timing and dynamic of 

growth, a process-based modeling can be a very 

useful tool.  

The Vaganov-Shashkin model was proved to 

provide reliable estimates of tree growth under 

strong limited conditions.  

Based on the assumption that climate conditions 

are determining cell differentiation mostly in 

the cambial zone, the model computes daily 

growth rate and converts it into the rate of cell 

production. In this work, we present a two-steps 

approach combining the process-based VS-

modeling and the timing procedure for cell 

production (Figure 3). An automatic method to 

identify the formation time of new cell transfer 

to the enlargement zone of tree ring was 

developed in R (Popkova et al., 2018).  

The main advantage of a new approach was the 

ability to estimate daily values of growth rates 

Figure 3. Daily integral growth rate Gr simulated for 1974 (A); cumulative growth rate Gr (B); actual cell 

profile (C). At the start of growing season the formation of bigger cell needs less time than smaller cell at 

the end due to different rates of cell formation. 
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and timing of cell formation in the forest-steppe 

zone in southern Siberia over a long period of 

direct climate observations without labour-

intensive field measurements. The significant 

correlation between the original algorithm and 

its updated automatic version proves 

correctness and reliability of the new method. 

3.3- VS-simulation and tree-ring 

phenology 

The variability of tree stem phenology plays a 

critical role in determining the productivity of 

forest ecosystems. Therefore, we aim to identify 

the relationships between the timings of 

cambium phenology, and forest growth in terms 

of tree-ring width over a long-term scale (He et 

al., 2018; 2019). A meta-analysis was 

performed that combined the timings of xylem 

formation, which were calculated by VS- model 

and its parametrization over the period 1960–

2014, and a tree-ring width series at 20 

composite sites on the Tibetan Plateau (He et 

al., 2018).  

Both the start and length of the growing season 

significantly affected the formation of wood at 

70% of sites within the study region. A wider 

tree ring probably resulted from an earlier start 

and a longer duration of the growing season (He 

et al., 2018; 2019). 

The influence of ending dates on tree-ring width 

was less evident, and more site-dependent. 

Weak relationships were identified between the 

start and end of the growing season at 85% of 

the composite sites (He et al., 2018). 

 Compared to the monitoring results, which 

could only detect the relationships between 

cambium phenology and xylem cell production 

from a limited number of trees and years, our 

long-term relationships deepened such 

connections, and therefore should be used to 

improve mechanism models for the accurate 

evaluating and predicting of wood production 

and carbon sequestration in forest ecosystems 

under current and future climate change (He et 

al., 2018). 

Conclusion 

By itself, the Global Tree-Ring Growth 

Evolution Neural Network (VS-GENN) is an 

unique information technology platform which 

uses most modern design of mathematical 

algorithms and approaches applied in 

Dendroecology. Another significant part of VS-

GENN is an expert knowledge in 

Dendrochronology, Tree Physiology as an 

Expert Data Base integrated in the IT-platform, 

which will be used for the machine learning of 

the neural network.   

Developing VS-GENN can be a good visual 

example for young scientists from different 

countries (particularly, France and Russia) to 

use data in real ecological tasks based on 

modern information technologies. With this 

goal, we plan to develop several sources with 

step-by-step decision of different ecological 

tasks in the near future after project completion. 

4- Perspectives of future collaborations 

with the host laboratory 

The developed IT-system will facilitate the 

processing of complex spatial-temporal data 

sets for experts from many countries and lead to 

a reduction of the time taken for such 

processing. 

The potential users of obtained results include 

palaeoclimate researchers, scientists studying 

and testing models and processes of sub-

components of the climate system and a variety 

of climate change impacts researchers. 
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